Artificial neural network models for predicting the solar radiation as input of a concentrating photovoltaic system

نویسندگان

  • C. Renno
  • F. Petito
  • A. Gatto
چکیده

The energy production analysis of a system based on renewable technology depends on the inputs estimation accuracy. The solar energy is a free resource characterized by high variability; hence, its correct evaluation is a strategic factor for the feasibility of a solar system. In this paper a new methodological approach is presented in order to evaluate more accurately the electric and thermal energy production of a point-focus concentrating photovoltaic and thermal system (CPV/T). Two Artificial Neural Network (ANN) models for predicting solar global radiation and direct normal solar irradiance (DNI) are developed adopting different parameters such as climatic, astronomic and radiometric variables. In particular, a new combination of parameters is proposed in this paper and adopted first of all for the global radiation evaluation whose ANN model can be easily compared with the literature; the data are trained and tested by a multi layer perceptron (MLP). Hence, the results validation for the global solar radiation evaluation has encouraged to design an ANNmodel for the DNI by means of a similar variables set. The MLP network is trained, tested and validated for the hourly DNI estimation obtaining the MAPE, RMSE and R statistical indexes values respectively equal to 5.72%, 3.15% and 0.992. Finally, the electric and thermal outputs of a point-focus CPV/T system are evaluated varying the concentration factor and cells number, and adopting as input the DNI evaluation results obtained by the ANNmodel presented in this paper. The CPV/T system outputs are estimated referring to the city of Salerno (Italy) under different meteorological conditions. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Efficiency of Monocrystalline and Polycrystalline Photovoltaic Panels Using Neural Network Models

The energy production analysis of a  photovoltaic system depends on the panels tempreture and solar radiation. An endless and free source of solar energy received at the Earth's surface depends on the geographical location, different hours of day and seasons of the year.Hence, its correct evaluation is a strategic factor for the feasibility of a solar system. in this paper, a new method of ener...

متن کامل

Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network

The optimum design of solar energy systems strongly depends on the accuracy of  solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322  N lo...

متن کامل

Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks

Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...

متن کامل

Estimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks

In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...

متن کامل

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016